If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-32x+88=0
a = 2; b = -32; c = +88;
Δ = b2-4ac
Δ = -322-4·2·88
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{5}}{2*2}=\frac{32-8\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{5}}{2*2}=\frac{32+8\sqrt{5}}{4} $
| 1+2(x+2)=-3(+x) | | 5x+10x=18+x | | -5x^2+80x-365=0 | | 4x/3=4x-16 | | 3m/4=m+6/9 | | 6*(2x+19)=150 | | 4(x-5)=-3x+29 | | 2p-3=3/4p+7 | | 6x+17=2-(x-1) | | 2p-3=3.4p+7 | | 7^2^x^2^-x=1/7 | | 3(3x-2)-6=15 | | 3(k-2)=1 | | 3(k-2=1 | | 7^x-2.7^1^-x-5=0 | | x=-2/2.1=-1 | | (6x+1)/5=x | | 4^x-15.2^x+56=0 | | 4x-28=2(4x+4) | | x8+-x7+2x6=0 | | -5a+5a=9=8 | | -24=2(x-3) | | 4x+21=3(x+5) | | 5x+50=65 | | 28=7z-7 | | 5(x+2)+40=65 | | 6*x+3=0 | | 11=4z-9 | | 14x-17=6x+7 | | 16=5b+6 | | 9X-5=3•(x-2)+13 | | 3(2x-1)=2x-3 |